Spatial receptive field organization of macaque V4 neurons.

نویسندگان

  • Daniel A Pollen
  • Andrzej W Przybyszewski
  • Mark A Rubin
  • Warren Foote
چکیده

Subfield analysis of the receptive fields (RFs) of parafoveal V4 complex cells demonstrates directly that most RFs are tiled by overlapping second-order excitatory inputs that for any given V4 cell are predominantly selective to the same preferred values of spatial frequency and orientation. These results extend hierarchical principles of RF organization in the spatial, orientation and spatial frequency domains, first recognized in V1, to an intermediate extrastriate cortex. Spatial interaction studies across subfields demonstrate that the responses of V4 neurons to paired stimuli may either decrease or increase as a function of inter-stimulus distance across the width axis. These intra-RF suppressions and facilitations vary independently in magnitude and spatial extent from cell to cell. These results taken together with the relatively large RF sizes of V4 neurons - as compared with RF sizes of their afferent inputs - lead us to hypothesize a novel property, namely that classes of stimulus configurations that enhance areal summation while reducing suppressive interactions between excitatory inputs will evoke especially robust responses. We tested, and found support for, this hypothesis by presenting stimuli consisting of optimally tuned sine-wave gratings visible only within an annular region and found that such stimuli vigorously activate V4 neurons at firing rates far higher than those evoked by comparable stimuli to either the full-field or central core. On the basis of these results we propose a framework for a new class of neural network models for the spatial RF organizations of prototypic V4 neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.

Many neurons in extrastriate visual cortex have large receptive fields, and this may lead to significant computational problems whenever multiple stimuli fall within a single field. Previous studies have suggested that when multiple stimuli fall within a cell's receptive field, they compete for the cell's response in a manner that can be biased in favor of attended stimuli. In the present study...

متن کامل

Disparity-selective neurons in area V4 of macaque monkeys.

Area V4 is an intermediate stage of the ventral visual pathway providing major input to the final stages in the inferior temporal cortex (IT). This pathway is involved in the processing of shape, color, and texture. IT neurons are also sensitive to horizontal binocular disparity, suggesting that binocular disparity is processed along the ventral visual pathway. In the present study, we examined...

متن کامل

Processing of kinetic boundaries in macaque V4.

We used gratings and shapes defined by relative motion to study selectivity for static kinetic boundaries in macaque V4 neurons. Kinetic gratings were generated by random pixels moving in opposite directions in the neighboring bars, either parallel to the orientation of the boundary (parallel kinetic grating) or perpendicular to the boundary (orthogonal kinetic grating). Neurons were also teste...

متن کامل

Spectral receptive fields do not explain tuning for boundary curvature in V4.

The midlevel visual cortical area V4 in the primate is thought to be critical for the neural representation of visual shape. Several studies agree that V4 neurons respond to contour features, e.g., convexities and concavities along a shape boundary, that are more complex than the oriented segments encoded by neurons in the primary visual cortex. Here we compare two distinct approaches to modeli...

متن کامل

Spectral Receptive Fields Do Not Explain Tuning for Boundary

23 24 The mid-level visual cortical area V4 in the primate is thought to be critical for the neural 25 representation of visual shape. Several studies agree that V4 neurons respond to 26 contour features, e.g., convexities and concavities along a shape boundary, that are 27 more complex than the oriented segments encoded by neurons in the primary visual 28 cortex. Here we compare two distinct a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cerebral cortex

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2002